|
Tom Seinen, MSc PhD Student Email:
|
Background
Tom obtained his BSc (2015) in Computer Science from Roosevelt University College, followed by an MSc (2017) in Bioinformatics and Systems Biology from Leiden University and an MSc (2019) in Health Informatics from the Karolinska Institute, Stockholm. His thesis, conducted within the Computational Health Informatics Lab at the University of Oxford, focused on the risk prediction of patient deterioration in the clinical ward using ICU data and different machine learning methods.
Currently, his studies in the Health Data Science group are focused on clinical natural language processing and the incorporation of information from clinical text data in patient-level prediction models.
Publications
Seinen TM, Fridgeirsson E, Ioannou S, Jeannetot D, John LH, Kors JA, Markus AF, Pera V, Rekkas A, Williams RD, van Mulligen E, 2022. Use of unstructured text in prognostic clinical prediction models: a systematic review. Journal of the American Medical Informatics Association. https://doi.org/10.1093/jamia/ocac058
Seinen TM, Kors JA, van Mulligen EM, Fridgeirsson E, Rijnbeek PR, 2023. The added value of text from Dutch general practitioner notes in predictive modeling. Journal of the American Medical Informatics Association. https://doi.org/10.1093/jamia/ocad160
Presentations
2023
Tom M. Seinen, Jan A. Kors, Erik M. van Mulligen, Peter R. Rijnbeek. Comparing concepts extracted from clinical Dutch text to conditions in the structured data. https://www.ohdsi.org/2023showcase-504/
2022
Tom M. Seinen, Erik M. van Mulligen, Jan A. Kors, Katia Verhamme, Peter R. Rijnbeek. Disambiguation of ICPC codes using free-text and active learning to improve concept mappings. https://www.ohdsi.org/2022showcase-112/
Tom M. Seinen, Peter R. Rijnbeek. Vocabulary Versioning: Tracking Concepts over Time Software Demonstration. https://www.ohdsi.org/2022showcase-3/
Tom M. Seinen, Jan A. Kors, Erik M. van Mulligen, Peter R. Rijnbeek. Concept extraction from Dutch clinical text. https://www.ohdsi-europe.org/images/symposium-2022/posters/Tom-Seinen_medspacy-dutch_2022symposium_-_OHDSI_Europe.pdf
2020
Tom M. Seinen, Jan A. Kors, Erik M. van Mulligen, Peter R. Rijnbeek. Use of unstructured text data in electronic health records to improve patient-level prediction models. https://www.ohdsi.org/2020-global-symposium-showcase-58/